Precision Measurement of the W Mass and New Physics

- 1. Why?
- 2. W Mass: Status and Measurement Techniques
- 3. Status of Theory Calculations for W/Z Production
- 4. Conclusions

Ulrich Baur State University of New York at Buffalo

1 – Why?

- The LHC is a discovery machine. Why should we measure the W mass, and more generally, do precision physics at such a facility?
- After all a precise measurement of M_W in a hadron collider environment is no walk in the park (see talks by Ashutosh Kotwal, Junjie Zhu)
- more bluntly:

"I rather commit suicide than measure M_W at the LHC" (Guido Altarelli at an early LHCC meeting)

- Which measurements are of interest?
 - $> m_t, M_W \text{ and } \sin^2 \theta_W$
 - \rightarrow make it possible to constrain the mass of the SM Higgs boson: winter 2010: $M_H < 155$ GeV (95% CL) one-loop corrections to M_W and $\sin^2\theta_W$ depend logarithmically on M_H
 - → thus providing a consistency check on the SM (once a Higgs boson candidate has been observed)
 - → may give hints of new physics, or provide constraints on new physics models
 - new particles contribute to the one-loop corrections

Data in better agreement with SUSY models than SM

but this is not surprising as SUSY models have more free parameters

CMSSM: Constrained MSSM

NUHM1: a common SUSY-breaking contribution to the Higgs masses is

allowed to be non-universal

W and Z Production has been observed at the LHC

W→ev candidate

W→ev Candidate

Pheno 2010 Symposium, Madison, Wisconsin, May 10-12, 2010

Jianming Qian (University of Michigan) 17

- ullet expect a torrent of W's and Z's at the LHC in the near future
- for $\sqrt{s}=7$ TeV: $\sigma(W^\pm\to\ell\nu)\approx 10.5~{\rm nb}$ $\sigma(Z\to\ell^+\ell^-)\approx 0.96~{\rm nb}$
- cross section approximately doubles for $\sqrt{s} = 14 \text{ TeV}$

2 – W Mass: Status and Measurement Techniques

 \bullet current W mass results:

world average: $M_W = 80.399 \pm 0.023 \text{ GeV}$

- CDF measurement based on 0.2 fb^{-1}
- DØ measurement based on 1 fb $^{-1}$; electron channel only
- CDF expectation: $\delta M_W = 25 \text{ MeV for } 2.4 \text{ fb}^{-1}$
- techniques used: transverse mass (M_T) , and lepton transverse momentum $(p_T(\ell))$ distribution

- $M_T = \sqrt{2p_T(\ell)p_T(\nu)(1-\cos\phi_{\ell\nu})}$ distribution:
 - rightharpoonup independent of $p_T(W)$ to first order
 - detector effects dominated by resolution for p_T of neutrino (ie. the missing transverse momentum, p_T)
- $p_T(\ell)$ distribution:
 - sensitive to $p_T(W)$ (ie. to higher order QCD corrections)
 - rightharpoonup insensitive to p_T resolution

- LHC expectations:
 - ATLAS: $\delta M_W = 7$ MeV for 10 fb⁻¹ per lepton channel using the M_T and $p_T(\ell)$ distributions (arXiv:0805.2093)
 - \rightarrow need excellent understanding of detector (lepton scale and resolution, p_T resolution) to achieve this
 - ightharpoonup assumes that PDF uncertainties can be controlled such that they contribute only 1 MeV to δM_W
 - → assumes that needed theoretical tools will be available to achieve
 a 1 MeV uncertainty from unknown higher order corrections
 - CMS: $\delta M_W = 40$ MeV (20 MeV) for 1 fb⁻¹ (10 fb⁻¹) using the scaled observable method and the so-called morphing method (J. Phys. G **34** (2007), N193)

need

$$\delta M_W \approx 7 \times 10^{-3} \cdot \delta m_{top}$$

for equal contribution to M_H uncertainty from m_{top} and M_W

- Tevatron: $\delta m_t = 1.4 \text{ GeV}$ (and counting down...)
- $ightharpoonup \exp \operatorname{expect} \delta m_t \approx 1 \text{ GeV at LHC}$
- limited by non-perturbative QCD effects, which introduce theoretical uncertainty $\delta m_t = \mathcal{O}(\Lambda_{QCD})$ (renormalon uncertainty)
- → $\delta M_W < 10$ MeV should be goal for LHC

Food for thought...

• However, there are important differences between the Tevatron and LHC W mass analyses which have been ignored in the CMS and AT-LAS estimates (Dydak et. al., arXiv:1004.2597):

Tevatron: $\sigma(W^+) = \sigma(W^-)$ (*CP* invariance)

 \implies LHC: $\sigma(W^+) \neq \sigma(W^-)$

cannot pursue a 'charge-blind' analysis at the LHC:

 W^+ production: $u\bar{d} + c\bar{s}$

 W^- production: $d\bar{u} + s\bar{c}$

Z production: $u\bar{u} + d\bar{d} + s\bar{s} + c\bar{c} + b\bar{b}$

- what counts uncertainty on $u_v(x)-d_v(x)$, s(x)-c(x), and c and b-quark PDF's is what counts
- Biases from current uncertainties in the PDF's of 1st (2nd) generation quarks introduce an uncertainty on M_W which may be much larger than the target precision

• Remedies:

- Need a dedicated charge specific LHC analysis programme (didn't we know that already?)
- rightharpoonup targeted to constrain $u_v(x) d_v(x)$ and s(x) c(x) (asymmetry of the ℓ^+ and $\ell^ p_T$ spectra)
- run at two center of mass energies $\sqrt{s_1}$ and $\sqrt{s_2} = (M_Z/M_W)\sqrt{s_1}$ (same momentum fractions of quarks that annihilate to W and Z)
- reduce current of magnet by a factor of M_W/M_Z to equalize curvature radius for leptons from W and Z decays
- reverse the magnetic field in the detector (detectors are not invariant under parity)
- need to run with light isoscalar ion beams (deuterium, helium) to reduce the $u_v d_v$ PDF uncertainty
- rightharpoonup or do a dedicated μN scattering experiment

- can also measure $M_{W^+} M_{W^-}$ (Fayette *et al.*)
 - tests CPT invariance
 - constrains BSM physics
 - currently: $M_{W^+}-M_{W^-}=257\pm117$ MeV (electron channel) and $M_{W^+}-M_{W^-}=286\pm136$ MeV (muon channel) (CDF)
 - uncertainties are much larger than for charge averaged measurement: trade off between control of detector to positive and negative particles over full detector and relative control of charge-averaged detector response in left and right sides of detector
 - can achieve $\delta(M_{W^+} M_{W^-}) = \mathcal{O}(10 \text{ MeV})$ if strategies are implemented which constrain PDF's to guarantee that $\delta M_W = 10 \text{ MeV}$ can be achieved (see above)

Measuring M_W : The Scaled Observable Method

- Conceptually discussed in Giele, Keller, PRD 57, 4433 (1998)
- basic idea: use known Z boson parameters (mass, width) for calibration and measure M_W using the ratio of scaled transverse mass distributions for W and Z
 - advantage: many uncertainties cancel in ratio
 - disadvantage: precision limited by Z boson statistics ($\sigma(Z \to \ell^+\ell^-) \approx 1/10 \times \sigma(W \to \ell\nu)$)
 - relies on detailed understanding of the detector response by means of MC simulations compared to control samples

Measuring M_W : The Morphing Method

- basic idea:

 - rightharpoonup morph one Z decay lepton into p_T with the correct resolution
- same advantages, disadvantages and theory requirements as for scaled observable method

3 – Status of theory calculations for W/Z production

- the NNLO QCD corrections to W/Z production are known in fully differential form (Melnikov, Petriello) and are available in form of a parton level MC program (FEWZ)
- resummed NLL QCD corrections (soft gluon resummation) are known (RESBOS)
- NLO QCD corrections have been merged with HERWIG in MC@NLO and POWHEG
- several calculations of the full $\mathcal{O}(\alpha)$ EWK corrections to W/Z production exist (UB, Wackeroth [WGRAD, ZGRAD]; Bardin *et al.* [SANC]; Carloni Calame *et al.* [HORACE]; Dittmaier, Denner; Jadach *et al.* [WINHAC])

- $\mathcal{O}(\alpha)$ electroweak (EWK) corrections to W/Z production
 - \sim 1-loop: naively of $\mathcal{O}(\alpha) \leq 1\%$
 - why bother?
 - EWK corrections may be enhanced by large
 - \rightarrow collinear logs: $\log(\hat{s}/m_f^2)$, relevant near the W/Z peak
 - \rightarrow Sudakov logs: $\log(\hat{s}/M_{W/Z}^2)$, relevant at large di-lepton masses
 - riangle QCD corrections may be small (example: QCD corrections largely cancel in W/Z cross section ratio)
 - for consistent treatment need PDF's which include QED corrections. These are available in MRSTQED04 set

Anatomy of the EWK $\mathcal{O}(\alpha)$ Corrections

- 1-loop EWK corrections shift W and Z masses by $\mathcal{O}(100 \text{ MeV})$
 - most of the effect comes from final state photon radiation
 - proportional to

$$\frac{\alpha}{\pi} \log \left(\frac{\hat{s}}{m_{\ell}^2} \right)$$

 \rightarrow these terms together with the Sudakov logs significantly influence the $\ell^+\ell^-$ inv. mass distribution and $\ell\nu$ transverse mass distribution (pole approximation: no Sudakov logs are present)

• the existing calculations of the full $\mathcal{O}(\alpha)$ corrections agree in most cases within the statistical uncertainty of the MC integration (TeV4LHC report [arXiv:0705.3251] and Les Houches 2005 proceedings [arXiv:0803.0678])

• sample results from a tuned comparison:

Multi-photon Radiation Effects

- if final state photon radiation shifts W mass by $\mathcal{O}(100)$ MeV:

 - two photon radiation is known to significantly change the shape of the $m(\ell\ell)$ and M_T distributions (UB, T. Stelzer, 1999)
 - ightharpoonup multi-photon radiation in W decay has been incorporated in WIN-HAC
 - ightharpoonup multi-photon radiation in W and Z decays are also integrated in HORACE
 - \longrightarrow multi-photon radiation shifts M_W , M_Z by $\mathcal{O}(10 \text{ MeV})$

Electroweak Sudakov Logs

- for $\hat{s} \gg M_{W/Z}^2$, the weak corrections become large and negative
- for LHC energies it is necessary to resum Sudakov logs
- Logarithmic corrections are known to NNNLL accuracy (Kühn et al.)
- Sudakov logarithms have been implemented in ZGRAD and HORACE (arXiv:0803.0678)

Combining QCD and EW corrections

- In order to achieve $\delta M_W \approx 10$ MeV or better, a calculation which combines QCD and EW corrections is needed
 - rightharpoonup EW corrections shift the W mass extracted from data
 - ightharpoonup QCD corrections smear the Jacobian peak of the M_T distribution and thus limit the precision which can be achieved
- First step: final state QED bremsstrahlung has been included in RES-BOS (Cao, Yuan)
- A combination of QCD and EW corrections is also needed for large $\ell^+\ell^-$ ($\ell\nu$) invariant masses, where EW corrections can be as large in magnitude as the NLO QCD corrections
 - \rightarrow this region is important for new physics searches (W' etc.)

- QCD and EW corrections tend to cancel
- However, EW corrections do not include real EW corrections, eg. $WW \rightarrow \ell \nu j j$ which may partially cancel the large, negative EW one-loop corrections (UB)
- answer depends on whether one looks at exclusive or inclusive Drell-Yan production

 $\mathcal{R}_{e\nu}$: relative correction to LO cross section

- The HORACE team has interfaced HORACE with MC@NLO (arXiv:0907.0276)
 - the procedure for doing this is not unique
 - additive approach:

$$\left[\frac{d\sigma}{d\mathcal{O}}\right]_{QCD\&EW} = \left\{\frac{d\sigma}{d\mathcal{O}}\right\}_{MC@NLO} + \left\{\left[\frac{d\sigma}{d\mathcal{O}}\right]_{EW} - \left[\frac{d\sigma}{d\mathcal{O}}\right]_{LO}\right\}_{HERWIG\ PS}$$

factorized approach:

$$\left[\frac{d\sigma}{d\mathcal{O}}\right]_{QCD\&EW} = \left(1 + \frac{[d\sigma/d\mathcal{O}]_{MC@NLO} - [d\sigma/d\mathcal{O}]_{HERWIGPS}}{[d\sigma/d\mathcal{O}]_{LO/NLO}}\right) \times \left\{\frac{d\sigma}{d\mathcal{O}_{EW}}\right\}_{HERWIGPS}$$

- defined either in terms of LO or NLO cross section
- \longrightarrow differ at $\mathcal{O}(\alpha_s^2)$ by non-leading contributions

- the residual uncertainties resulting from the ambiguity between the additive and factorized approach are of $\mathcal{O}(\alpha \alpha_s)$
- they are numerically significant (correspond to shift in M_W of $\mathcal{O}(20 \, \text{MeV})$ (Vicini))

 \rightarrow need full $\mathcal{O}(\alpha\alpha_s)$ corrections to quantify

4 – Conclusions

- M_W , together with m_{top} , make it possible to constrain the Higgs boson mass
- need $\delta M_W = \mathcal{O}(10 \text{ MeV})$ to match anticipated precision for m_{top}
- sensitive to new physics via loop corrections
- measuring M_W at the LHC is non-trivial and may require special runs (deuterium, helium) and/or special detector configurations (reverse magentic field)
- EW radiative corrections affect the M_T line shape and thus the W mass extracted from data
- need better understanding how to combine calculations of QCD and EW corrections into one unified generator

